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Abstract— Biological evolution provides an immensely 

powerful toolset for problem solving, while evolutionary 

computation attempts to harness the power of biological 

evolution for solving problems using classical computing 

paradigms.  Quantum computing offers many apparent 

advantages over classical computing for certain types of 

problems, such as searching or optimizing over large solution 

sets. Once practical quantum computers are available, we would 

like to take advantage of their highly parallel computing 

capabilities for use in evolutionary computation.  In this work we 

explore the nexus between quantum and evolutionary 

computation, and propose an approach toward a practical 

framework for performing evolutionary computation on 

quantum computers.  
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I.  INTRODUCTION 

HE availability of practical quantum computers may have 

a significant impact on the use of evolutionary computing 

techniques. Quantum computing offers the potential to 

fundamentally change evolutionary computation as we know it 

by allowing certain operations, which on a classical computer 

require exponential computational complexity, to be 

performed in polynomial time. The exploration of certain state 

spaces may be performed in parallel on a quantum computer 

such that all possible states are explored simultaneously.  

Pure quantum computation, however, will likely be of 

limited value.  Only through integration of hybrid quantum 

and classical computing hardware will significant advances be 

achieved in rendering currently intractable problems (under 

classical computing) tractable.  One line of research for 

integrating quantum and evolutionary computation focuses on 

the use of genetic programming techniques to automatically 

generate quantum programs [1].  In this work we consider a 

different tack:  that the availability of quantum computing 

hardware will allow new opportunities for evolutionary 
computation. 

A significant worldwide effort is underway to build the 

first practical (non-trivial) quantum computer (that is, a 

quantum computer that can solve a problem not more easily 
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and trivially solved using a classical computer).  To date 

quantum computers have been built containing a small number 

of qubits (fewer than a dozen).  Producing a working quantum 

computer is a daunting challenge, involving researchers in a 

variety of disciplines ranging from physics to chemistry to 

material science to mathematics to computer science. 

Nonetheless, several physicists and other practitioners of 

science argue that there is significant evidence that biological 

systems already use quantum computing as part of the suite of 

biological processes that give rise to and sustain life, as 

described below.  

Since practical quantum computers are not yet available, 

and only very crude and simple quantum computers have been 

simulated on classical computing platforms, the scope of this 

effort is limited to considering the potential for performing 

evolutionary computation on a quantum computer, and 

addressing some of the obstacles to achieving this goal. 

A. Biology, Evolution, and Computation 

Biological evolution and quantum evolution both provide 

mechanisms for change and adaptation of natural systems.  In 

biological evolution the processes involved operate at the 

macroscopic level and principally concern complex systems of 

organic molecules which have self-organized to possess the 

property we call “life”.  Such systems perform an astonishing 

array of complex activities which allow them to grow, eat, 

breathe, reproduce, and pass their genes on to subsequent 

generations, thereby preserving some semblance of their 

genetic identity into the future, well beyond the lifespans of 

the individual organisms.   

Quantum evolution (the meaning of the term evolution as 

used here is distinguished from its meaning as used in 

biological evolution), on the other hand, describes change and 

adaptation of natural systems at the very smallest scales, such 

as the interactions between subatomic particles, photons of 

light, and in some cases, atoms and molecules.  Modern 

theories of quantum mechanics describe particles as existing 

as wave functions in superposed or entangled states such that 

the probability of measuring the system in one state or another 

depends upon the observation being made and whatever 

interactions may occur with the particle(s) and the outside 

environment. 

T 



        

Whereas evolutionary computation (EC) seeks to apply 

techniques inspired by natural biological evolution to solve 

challenging practical problems in engineering, the sciences, 

and elsewhere, quantum computation is the application of 

quantum mechanical phenomena to solve computational 

problems.  Quantum computing offers the potential to solve a 

number of computational problems, such as the factoring of a 

large number into the product of primes for breaking complex 

cryptographic systems, in polynomial time.  Such problems 

may be solved using classical computing techniques only with 

exponentially increasing amounts of computing time and/or 

memory.  Whereas these problems become computationally 

intractable under classical computing as the problem size 

increases (with problem size indicated by some problem 

dependent parameter such as the number of digits of a large 

composite number), under quantum computing the problem 

may still be tractable, increasing in complexity as only a 

polynomial function of the problem size. 

We begin our analysis of the intersection of evolutionary 

and quantum computation with a review of some of the more 

prominent claims regarding the use of quantum effects in 

living systems, and in particular optimization using biological 

quantum computers. 

II. BIOLOGICAL QUANTUM COMPUTATION 

The role of quantum computing in biological evolution is 

currently the subject of active investigation.  It is plausible that 
quantum phenomena, if not quantum computing, play a role in 

certain DNA synthesis and cellular processes, and may in fact 

play a crucial and necessary role which cannot be achieved 

using classical mechanisms.  If the means for achieving 

quantum mechanisms using biochemical molecules at the 

cellular level are available to biological evolution in order to 

improve upon non-quantum optimization effects, it would 

seem reasonable that evolution would in fact take advantage of 

these quantum mechanisms.  In this section we look at 

evidence and argument by a range of scientists on the role of 

quantum computing on biological evolution.   

A. Patel’s Quantum Genetic Synthesis Model 

Apoorva Patel, a physicist at the Indian Institute of Science 

in Bangalore, argues that the human body, and every other 

living thing, is teeming with quantum computers doing 

everything from organizing protein structures to copying DNA 

to regulating cellular processes [2].  While it is well known 

and widely accepted that quantum mechanics plays an 
important role in organic chemistry, with tautomeric bonds, 

potential wells, quantum tunneling effects and the like, little 

attention has been given to the existence of macroscale effects 

of quantum mechanics.  Patel argues that nature used the 

computational power of evolution in order to design 

microscopic quantum computers billions of years ago, and that 

these quantum computers are an essential ingredient for life.  

Patel begins his argument by describing life (in particular, 

biomolecular life) as a form of computation.  Computation is 

the processing of information.  Biological structures such as 

DNA and RNA are then simply means for encoding 

information.  DNA and RNA are strings composed from an 

alphabet of 4 letters (hence, a quaternary system as opposed to 

binary), and proteins are composed from an alphabet of 20 

amino acids.   

One of the key mysteries of biology Patel seeks to answer 
is why nature evolved a 4-character (quaternary) alphabet for 

representing DNA rather than a 2-character binary one.  

Intuition would suggest that binary would be simpler, more 

efficient, and less prone to errors.  Patel argues that using 

quantum computing, the 4-character alphabet is in fact more 

efficient because certain matching operations of DNA, such as 

connecting the appropriate base pairs together, is actually 

more efficient than would be the case with a binary alphabet.  

The matching of base pairs actually involves a superposition 

of possible matches, with quantum interference steering the 

bases to their proper complements in the chain.   

The superiority of quantum computing over classical 
computing for searching databases (in this case a database of 4 

types of entries) has been proven using Grover’s algorithm 

(Section III.B below).  In the case of DNA replication, the 

speedup provided by quantum computing is a factor of two.  

Patel writes “… it is imperative to investigate whether DNA 

has the quantum hardware necessary to implement the 

quantum search algorithm.” 

B. McFadden’s Quantum Adaptive Mutation Model 

Standard theories of Darwinian evolution hold that 

mutations occur randomly, and that the direction of 

evolutionary change is determined by selection mechanisms 

imposed by the environment to favor more highly fit 

individuals.  Recent studies of the frequency of mutations in 

bacteria and eukaryotes dispute this notion of mutations 

occurring randomly, and instead point to the possibility of an 

adaptive mutation mechanism.  Adaptive mutations differ 

from standard random mutations in that they (i) only occur in 
cells that are either not dividing or are dividing only rarely, (ii) 

are time-dependent, not replication dependent, and (iii) appear 

only after the cell has been exposed to the selection pressure.  

Johnjoe McFadden [3] argues that quantum mechanical effects 

accelerate the rate of mutation for genomes through 

interference of the wave function of the genome with the 

environment, thereby providing a mechanism for adaptive 

mutation.  McFadden further argues that spontaneous 

mutations may be initiated by quantum events such as the 

tunneling of a single proton from one site to another.  He 

justifies his argument by studying the decoherence times of 
protons within DNA, and shows that based upon such 

calculations, DNA strings may maintain coherence over the 

time scales required for mutations to occur. 

The significance of quantum mechanics in initiating 

mutations has been explored by many researchers since even 

before the discovery of the structure of DNA, including 

Delbuck et al. [4], Schrödinger [5], and Watson and Crick [6].  

Recent work by Goswami and Todd [7] and Ogryzko [8] 

describe DNA as existing in a superposition of mutational 

states, with the wave function collapsing due to interaction of 

the cell with the environment.  McFadden [3] argues that the 



        

mechanism of interaction that leads to the favorable mutation 

is a dense series of “measurements” which forces the quantum 

system to evolve along a desired path.  He compares this to the 

inverse quantum Zeno effect described by Aharonov and 

Vardi [9] and Altenmuller and Schenzle [10].  McFadden 

suggests that “living cells could act as biological quantum 

computers, able to explore multiple possible mutational states 

and collapse towards those states that provide the greatest 

advantage.”  Proving that living cells can and do exist in 

superposed quantum mutational states, however, will require a 

better understanding of quantum mechanical effects on 

macroscopic biological systems. 

C. Penrose’s Quantum Consciousness 

The British mathematician Roger Penrose is largely 

responsible for popularizing the connection between quantum 

phenomena and consciousness.  In his 1989 book The 

Emperor’s New Mind [11] and his 1994 book Shadows of the 

Mind [12] Penrose argues that based upon Gödel’s theorem, 

human thought is non-algorithmic, and not computable.  He 

argues that quantum mechanical phenomena lie at the heart of 

free will, and that free will requires consciousness. He points 

out that there is no current understanding or theory of the 

collapse of the wave function, and proposes that a theory of 
quantum gravity would fill the gap.  He further argues that no 

classical computer will ever achieve consciousness (or 

intelligence) because it doesn’t have free will, and goes on to 

argue that the seat of consciousness in the brain is the 

microtubules which form the cytoskeletons of neurons.  

Penrose speculates that microtubules play a key role in neural 

functioning, and serve to interact with the quantum gravity 

effect to achieve non-algorithmic computing. 

Many of Penrose’s assertions seem quite speculative in 

nature due to the lack of supporting scientific evidence 

establishing the role of quantum macroscale effects in 

biological systems. However, Penrose does help to elucidate 
where current theories of the effects of quantum phenomena 

on biological systems fall short.  

D. De Garis’ Quantum Brains 

Hugo de Garis [13] claims that when quantum computers 

are finally built, they will quickly make the field of 

evolutionary computing obsolete.  The heart of de Garis’ 
argument is that evolutionary computation is merely sampling 

a solution space of 2N individuals (where N represents the 

number of bits in the genome).  A quantum computer with N 

qubits will be able to search the entire space simultaneously by 

representing the genome as a superposition of qubits.  De 

Garis speculates that just as Moore’s Law doubles the number 

of transistors on a computer chip every eighteen months, 

improvements in quantum computers will increase the number 

of qubits at an exponential rate until eventually it exceeds 

Avogadro’s number (6.022x1023), at which point “it will be 

difficult to imagine any problem that will not succumb to its 

power.”  Despite the lack of relevance to the central thesis and 

conclusions of the paper, most of the work described therein is 

concerned with replacing evolutionary computing with a 

quantum computing framework to design and train neural 

networks.  De Garis refers to neural networks derived in this 

manner, and run on a quantum computer, as Quantum 

Artificial Brains. 

De Garis’s arguments are far from convincing for a variety 

of reasons.  First, the challenge of scaling quantum computers 

to include larger numbers of qubits is completely ignored.  
Maintaining coherence of superposed and entangled quantum 

states, and structuring quantum interference effects to achieve 

some desired computational goal, for large quantum systems 

are tremendously difficult unsolved problems. 

Second, simply superposing input values in qubits doesn’t 

solve the problem of doing a massively parallel search through 

a complex solution space.  The application of EC techniques 

to complex real-world problems often requires computer runs 

lasting days, weeks, or even months, even on a highly parallel 

computing platform. The reason for the long run times is often 

not the overhead due to the evolutionary algorithm, or even 

necessarily the size of the solution space; rather, it is usually 
the time-consuming evaluation of each individual.   

Suppose we want to evolve a flight control system that 

consists of 50 binary parameters.  Even if we could assign a 

qubit to represent each parameter, the computationally 

intensive part of the evolutionary process is running the 

simulation for each genome case to generate a fitness value.  A 

quantum computer designed to simultaneously evaluate every 

possible flight scenario to optimize a parameter set, the flight 

control laws, could in theory do this.  However, the challenge 

of the task is then shifted to the design of such a quantum 

computer.  Merely having a 50 qubit register for the inputs to 
the quantum computer doesn’t tell us how to build a quantum 

flight simulator. 

De Garis does point out the need for quantum compilers to 

help design software and circuits for quantum computing, 

although his motivation seems largely geared to the generation 

of simulations of “quantum-neural-network-based artificial 

quantum brains.” 

The role of quantum computing in biological evolution is 

currently the subject of much conjecture, speculation, 

argumentation, bold proclamation, and perhaps some bits of 

solid evidence.  It seems plausible that quantum phenomena, if 

not quantum computing, play a role in certain DNA synthesis 
and cellular processes, and may in fact play a crucial and 

necessary role which cannot be achieved using classical 

mechanisms.  If the means for achieving quantum mechanisms 

using biochemical molecules at the cellular level were 

available to biological evolution in order to improve upon 

non-quantum optimization effects, it would seem reasonable 

that evolution would in fact take advantage of these quantum 

mechanisms.   

In the next section we turn our attention to the specific 

advantages offered by known quantum algorithms over 

classical techniques, and address how we might incorporate 
these into a practical framework for quantum evolutionary 

computation (QEC), which we define as evolutionary 

computation performed on a quantum computer.  



        

III. FOUNDATIONS FOR A PRACTICAL FRAMEWORK FOR 

QUANTUM EVOLUTIONARY COMPUTATION 

A. Deutsch-Jozsa Algorithm 

The most dramatic advantage in computational speed-up of 

quantum computation over classical computation is perhaps 

best shown with the Deutsch-Jozsa algorithm [14]. The 

purpose of the algorithm is: 

Given a number x such that 0 ! x ! n-1, and  

Given a function f(x)  guaranteed to be either constant or  

    balanced for all values of x 

Calculate function f(x)  such that either: 

   f(x) is constant for all x  (either all zeros or all ones), or  

   f(x) is balanced for all x (half zeros and half ones). 

Return 0 if f(x)  is constant, and 1 if f(x) is balanced. 

While a classical algorithm requires 

! 

2
n
2 + 1  evaluations to 

perform the calculation, a quantum computer using the 

Deutsch-Jozsa algorithm can perform the calculation using a 

single evaluation. 

The challenge of formulating a framework for QEC based 

upon the Deutch-Jozsa algorithm is that the fitness evaluation 

requirement for evolutionary computation would need to be 

mapped onto the constant/balanced property of f, a non-trivial 

task.  In general, while the speed-up achieved by Deutsch-

Jozsa is truly impressive, to date there are no known 

applications of this algorithm to solve real computational 

problems. A computational problem that shows up much more 

frequently is search of a large database to find an entry or 
entries possessing certain features or qualities.   

B. Grover’s Algorithm 

In 1995 Lov Grover [15] showed that a quantum computer 

could search an unstructured solution space faster than a 

classical computer could.  Where the space to be searched 

consists of N unstructured entries, a classical algorithm 
requires O(N) operations, whereas a quantum computer 

running Grover’s algorithm could do it in O(

! 

N ) operations.  

While this is not as dramatic a speed-up as offered by the 
Deutsch-Jozsa algorithm, or even the speedup offered by 

Shor’s algorithm for factoring large composite numbers, it is 

still significant.   

Suppose we want to optimize a solution to a problem that 

has a solution space of size 2n, where n is the number of bits in 

the genome.  Doing a complete search of the space using a 

classical algorithm would require O(2n) operations.  A 

complete search using Grover’s algorithm would require 

O(2n/2) operations, a substantial savings.   

However, we must ask if we can do better.  After all, the 

point of the evolutionary algorithm is not to perform a 
thorough search of a completely unstructured solution space, 

but rather to sample a well-structured solution space such that 

each generation our sampling moves us closer to some 

extrema points in the space that represent better solutions.  

What we need is a variant of Grover’s algorithm that instead 

of exhaustively searching the solution space instead seeks to 

minimize or maximize some value or property over the space 

of solutions.  This is exactly what we find with Dürr’s 

algorithm. 

C. Dürr’s Algorithm 

Given an unsorted list of N items, Dürr’s algorithm [16] 

finds the index of the item with minimum value with 

probability of at least 1/2.  The algorithm requires O(

! 

N ) 
probes of the list.  This requires O(N) operations on a classical 

computer.  If the list is represented as a table T[0..N-1], then 

the minimum search problem is to find the index y such that 

T[y] is minimized.  The algorithm utilizes the quantum 

exponential search algorithm given in [17], and proceeds as 

follows. 

 

Quantum Minimum Searching Algorithm [16]: 

1.  Let c"1 and m0 be given 

     Choose threshold index y  uniformly at random 

     from {0, . . . , N-1} 

2.  Repeat the following until the total number of itera- 

     tions is more than c N  

a.  Initialize  |!0› =

! 

1

N
i

"  |i›|y› 

 Mark each item i for which T[i]<T[y] 

b.  Apply quantum exponential search algorithm [17]    

 to the first register, with a timeout of 2m0 iterations 

c.  Observe the first register:  let y’ be the outcome 

If  T[y’]<T[y], then set threshold index y to y’ 

3.  Return y 

 

As with many quantum algorithms, the value returned has 

a certain probability of being incorrect.  The algorithm may be 

rerun a number of times to reduce this probability of 
incorrectness to whatever level is desired. 

Dürr’s algorithm points us in a useful direction for 

establishing a practical framework for QEC.  Notice that the 

evaluation component, which we have previously argued is 

extremely important, is a simple comparison of two values. 

This is overly simplistic for most computational challenges to 

which we might apply an evolutionary algorithm.  However, if 

we have our eval function (such as the flight simulator 

discussed previously) implemented on a quantum computer, 

then Dürr’s algorithm shows us how we might find the 

minimum (or it could just as easily find the maximum).  No 

evolutionary algorithm would be needed, since we are in fact 
searching the entire space. 

D. Not All Solution Spaces are Unstructured 

Up to this point we have focused upon quantum algorithms 

that search through completely unstructured solution spaces.  

As the no free lunch theorem [18] tells us, no one algorithm is 
better than any other if no structure is imposed.  Machine 

learning techniques that try to generalize and “learn” 

classifications or mappings across state-spaces inherently 



        

depend upon the existence of some sort of exploitable 

structure. 

Evolutionary algorithms and other beam-search methods 

use gradients as well as highly-disruptive crossover operators 

to escape from local minima, and rely upon a population of 

individuals to explore the solution space.  Other techniques are 
very efficient at searching tree structures.  Whatever 

framework is used to achieve QEC, it will inevitably require 

that the algorithm exploit whatever structure may be present in 

order to improve performance of the search.  The worst-case-

scenario is that if no structure may be exploited, then we resort 

to Dürr’s algorithm and expect no better than O( N ) 

performance. 

E. Sampling versus Searching the Solution Space 

Another key difference between quantum search 

algorithms given to date and evolutionary computation 

algorithms is that the quantum search algorithms search the 

entire solution space rather than selectively sampling it. We 

can certainly sample the solution space with our quantum 

computers as well, but why would we?   

Some possible reasons might include that the quantum 

computer doesn’t possess a sufficient number of qubits to 

process all possible states of the eval function simultaneously, 

that not all of the available qubits can be mutually entangled, 
or that quantum gates only entangle a few qubits at a time. 

Suppose that our quantum computer requires 1000 qubits, but 

our state-of-the-art quantum computer may only entangle 10 

qubits at a time (more than is currently feasible), and that our 

quantum compiler is set up to optimize the quantum code to 

use the maximum number of qubits available.  The quantum 

computer is able to run many parts of the simulation 

simultaneously in parallel, but because it can’t entangle 

enough qubits simultaneously (due to quantum gate fan-in fan-

out limitations), it must store the results of intermediate states, 

possibly resulting in decoherence, and then reload the 

quantum gates with other pieces of code to continue.  Thus, 
the quantum computer uses a stored program just as does a 

von Neumann classical computer, but in this case the stored 

program is a quantum algorithm rather than a classical one.  

We might wish for a quantum mass storage device on which it 

would be possible to write intermediate results without having 

them decohere. However, the no-cloning theorem [19] tells us 

that it is impossible to exactly copy a quantum state without 

having it decohere.  Thus, it would seem that quantum mass 

storage is out.  A small glimmer of hope may exist, however, 

with the term exactly.  It may be possible to make a copy of a 

quantum state and maintain some level of coherence while 
also accepting some level of error or inexactness of the copy. 

By sampling rather than searching the solution space, the 

quantum search algorithm is able to utilize the dynamics of 

evolution to move the solution set toward a more global 

optimum. The speedup achieved by sampling over searching 

in the quantum computing framework would depend heavily 

upon the problem space and the efficiency of the evolutionary 

algorithm employed.  This is clearly a function of how well 

the evolutionary algorithm employed performs on the problem 

space. 

F. Parallel Distributed Evolutionary Algorithms 

While most of the discussion up to this point has assumed 

use of sequential generational evolutionary algorithms (EAs), 

an attractive alternative is the use of parallel distributed EAs 

[20]. Parallel distributed EAs are designed to run more 

efficiently on parallel hardware, but may be used 

advantageously on sequential processors as well [21]. Unlike 

sequential generational EAs that require global knowledge of 

the population in order to achieve progress, parallel distributed 

EAs may require no global knowledge. Instead, populations 
are represented using island models or diffusion grids [22] 

such that local sub-populations coevolve, and individuals 

periodically migrate to (or genetic information is otherwise 

exchanged with) neighboring groups. 

Parallel distributed EAs may have significant advantages 

over sequential generational EAs in the QEC framework. 

Elimination of fixed generational boundaries, and with no 

global knowledge of the population assumed, may allow 

quantum processors modeling individuals to become 

entangled, perform crossover and mutation (e.g. through 

quantum gate operations), and produce offspring while 
maintaining a coherent state. A similar effect may be possible 

using binary tournament selection with a generational EA; 

however, the overhead of running the tournament, sorting, 

truncation, etc. would still most likely be handled by a 

classical computer.   

G. Toward a QEC Framework 

The preceding sections address several points to consider 

in formulating a practical framework for QEC.  First, quantum 

computing may play a significant role in biological evolution 

from which we could draw inspiration for design of QEC 

algorithms.  However, our current state of knowledge in this 

area is woefully lacking.  First we should establish that there 

indeed are quantum phenomena operating on the biological 

scale that somehow affect evolution.  

One of the most readily measurable properties of 

biological systems that may shed light on whether or not 

quantum phenomena are operating at a macroscopic scale is 

adaptive mutation rate.  Through efficient DNA sequence 
analysis we can isolate the mutation rates at specific loci on 

the genomes of microbes.  It may be possible to design 

quantum genetic experiments on a large number of microbes 

with a strong tendency to mutate at these loci by controlling 

external conditions which are more (or less) favorable to 

certain mutations, allowing the microbes to mutate in an 

unobserved state for some number of generations while 

applying (or not) the external stimulus (in a double-blind 

procedure), genetically sequencing the offspring and 

observing the resulting mutation rates.  Statistical analysis 

should provide insight into the expected values for favorable 
mutations at the chosen loci assuming a random (but constant) 

rate of mutation, versus the differing result one might expect 

from a quantum adaptive mutation rate as predicted by [3].  Of 

course, merely showing that a mutation rate is adaptive 



        

doesn’t prove that quantum mechanics has anything to do with 

it.  If there is a quantum causal effect, it should be detectable 

based upon the observations of the experimenters. 

Quantum algorithms for searching unstructured sets have 

been shown to be superior to their classical equivalents [15], 

but for QEC we are more interested in searching structured 
sets (solution spaces). Dürr’s algorithm [16] provides one 

approach to finding the index of the least item in an 

unstructured list. Quantum algorithms for searching trees, 

directed graphs, linked lists, and surfaces with gradients would 

provide more secure footing for implementing evolutionary 

computation algorithms on a quantum computer.  

Finally, the type of evolutionary algorithm employed may 

play an important role in implementing it under a QEC 

framework.  Parallel distributed EAs offer a number of 

intrinsic characteristics better suited to quantum parallelism 

than sequential generational EAs. Representation of the 

genomes is critical, as is implementation of genetic operators 
and eval functions through quantum gate designs (hardware 

implementations of quantum algorithms). It is conceptually 

feasible to entangle k qubits in a single quantum register, and 

have the contents of that register represent all possible 

genotypes (or at least sub-genotypes of length k).  A 

potentially more daunting task would be to design a quantum 

super-gate that takes these qubits as inputs and simultaneously 

evaluates them, returning the “fittest” individual, or perhaps 

returning fitness scores for all (in a superposed state). The key 

is that if we can avoid falling into a decoherent state as much 

as possible, the efficiency of the QEC method over standard 
(classical computing) EC approaches will be maximized. If we 

can represent the entire genome population in a quantum 

register and perform all possible evals simultaneously, then 

there is no need to run an EA; we need only perform an 

exhaustive search of the problem space to find the optimum.  

If this is not possible (and it is the author’s opinion that it will 

not be possible except for trivial problems), then we need to 

figure out to decompose the problem for optimization using an 

EA in the QEC framework. 

If the key restriction on the implementation of practical 

quantum processors is the number of qubits that may be 

simultaneously entangled in a quantum register, or that may be 
maintained in a coherent entangled state through a quantum 

gate transform, then clearly we need to design parallel 

distributed EAs to take advantage of the available architecture.  

The key unknown for future research to resolve is how much 

and what types of information may be entangled (genes? 

genomes? base-pairs?), how may this information be searched 

using quantum algorithms (and their physical instantiation as 

quantum gates), and how may we store intermediate results 

from quantum operations.  QEC solutions will most likely 

involve integration of both quantum and classical computing 

components, with algorithms tailored to take advantages of the 
strengths of each. 

IV. SUMMARY AND CONCLUSIONS 

This paper explores issues in quantum computing and 

evolutionary computation relevant to creation of a practical 

framework for quantum evolutionary computation whereby 

evolutionary computation may be performed on a quantum 

computer.  In so doing we explore current evidence, theory 

and scientific conjecture regarding the role of quantum 

computing in biological evolution, we review key algorithmic 

developments of quantum computing as they might apply to 

QEC. We look at approaches to evolutionary computation 

itself, and discuss how one form of evolutionary computation 

may be better suited to implementation in a QEC framework 

than another.  Finally, we provide the broad outlines of a 

practical framework for QEC, and discuss how developments 

in quantum and evolutionary computation may help move us 

toward integration of the two. 
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